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Description

In collaboration with the Bureau 
of Land Management (BLM), the 
U.S. Geological Survey has produced 
annual maps of fractional (that is, 
percentage) component cover for 
1985–2021 (37 years) as part of the 
Rangeland Condition Monitoring 
Assessment and Projection (RCMAP) 
project (Shi and others, 2022). 
Components mapped include annual 
herbaceous, perennial herbaceous, 
total herbaceous, sagebrush, non-
sagebrush shrub, total shrub, litter, 
bare ground, and tree canopy cover. 
RCMAP 1985-2021 time series 
data (Rigge and others, 2022) can 

be downloaded from the Multi-
Resolution Land Characteristics 
Consortium website at 
https://www.mrlc.gov/​data.

Intended Use
Land managers and scientists can 

use annual fractional cover maps to 
monitor changes to vegetation com-
position, evaluate past management 
practices, target future improvements, 
determine locations of critical wild-
life habitat, assess effects of climate 
change and interannual variation, 
and appraise landscape health and 
fragmentation.

Training Data
Training data are obtained from 

various sources, including field 
observations and field data upscaled 
using remotely sensed imagery and 
machine learning (table 1 and fig. 1).

Independent Data
Training data relations to inde-

pendent data are the basis of the 
model development, and the rela-
tions (and independent data) thus 
directly drive mapping of fractional 
components.

Table 1.  Training data for Rangeland Condition Monitoring Assessment and Projection fractional component time series.

[n, number of observations; RCMAP, Rangeland Condition Monitoring Assessment and Projection; m, meter; ~, about; km, kilometer; BLM, Bureau 
of Land Management; USGS, U.S. Geological Survey; NPS, National Park Service]

Source n Notes Spatial extent Temporal 
extent

RCMAP high-
resolution sites 
degraded to 30 m

56,426,952 Data for each high-resolution site are predicted 
from 60 to 120 ocular observations, collected 
at the 2-m imagery resolution (see Rigge and 
others, 2020)

331 sites of ~15 x 
~15 km

2006–17

RCMAP Landsat- 
scale plots

8,691 Field observations located between high-
resolution sites

Average of 2 transects 
of 30 m or ocular 
estimation

2013–21

BLM Analysis 
Inventory and 
Monitoring

28,971 Herrick and others, 2017 Average of 3 transects 
of 50 m

2011–21

BLM Landscape 
Monitoring 
Framework

16,674 Herrick and others, 2017 Average of 3 transects 
of 50 m

2004–19

LANDFIRE public 
database

183,861 Curated from several sources: Forest Service 
vegetation and fuel plot data, USGS National 
Gap Analysis Program, NPS Inventory and 
Monitoring, State inventory data (see LAND-
FIRE, 2022)

Various methods 1985–2015

Total 56,665,149 1985–2021

https://www.mrlc.gov/data
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Figure 1.  Rangeland Condition Monitoring Assessment and Projection training data 
distribution.

A. 	 Topographic data include slope, 
aspect, position index, and 
elevation.

B. 	 Landsat imagery includes two 
median pixel composites for 
each year: leaf on, to represent 
peak vegetation growth, and leaf 
off, senesced (that is, brown) 

conditions (see table 2 for dates) 
by mapping region (fig. 2). The 
composites are further cleaned 
by identifying pixels with fewer 
than three clear observations, 
which tend to have incon-
sistent dates or have cloud/
shadow/snow contamination, 
and by considering the relevant 

synthetic dates (see C) in the 
median value calculation of 
these locations.

C. 	 Continuous Change Detection 
and Classification (CCDC) 
synthetic imagery were used to 
enhance the phenologic detail of 
imagery, improving discrimina-
tion among components. We 
included 6 months of CCDC 
synthetic images per year, cre-
ated from Landsat imagery, 
using models fit to the historical 
observations for each pixel (see 
Zhu and others, 2015). Synthetic 
images are targeted to preferen-
tially capture the early growing 
season (see table 2 for dates).

D. 	 Landsat imagery indices include 
the normalized difference water 
index, built-up index, soil 
adjusted vegetation index, and 
tassel cap indices: greenness, 
wetness, and brightness. Each 
index was produced for leaf-on 
and leaf-off median compos-
ites for each year. Indices are 
designed to reduce the feature 
space of Landsat imagery to 
better capture biophysically rel-
evant patterns and complement 
the imagery itself.

Model and 
Postprocessing

We used neural network mod-
els to predict fractional component 
cover; the models, which are 4 lay-
ers deep, are 128 neurons wide, 
and have a 20-percent dropout rate 
between each layer, were optimized 
with KerasTuner. For each mapping 
region, we developed a single neural 
network model to predict all compo-
nents. We compared our neural net-
work results with previous versions 
of RCMAP (Rigge and others, 2021a, 
b) that used Cubist (regression tree 
model): finding all else equal, error 
rates were reduced by 5–7 percent.



                              

Table 2.  Imagery composite dates by mapping region.

Region
Median composites Monthly synthetic

Leaf on Leaf off Leaf on Leaf off
Mediterranean California Dec. 1–May 30 June 1–Oct. 1 Jan., Feb., Apr. June, Sept.
Great Basin and Columbia Plateau Mar. 15–June 15 July 1–Nov. 1 Mar.–June Sept.
Northern Rocky Mountains June 15–Aug. 25 Apr. 15–May 15, 

Sept. 1–Oct. 15
June–Aug. Sept., Oct.

Northern Great Plains Apr. 1–June 30 July 15–Nov. 1 Apr.–July Sept.
Mojave, Sonoran, and Chihuahuan 

Deserts
July 20–Oct. 15 Mar. 1–July 1 Aug., Sept. Mar., Apr., June, 

Jan.
Southern Mountains June 1–Aug. 15 Apr. 1–May 1, 

Sept. 1–Nov. 1
June–Aug. Sept., Oct.

Colorado Plateau and Southwestern 
Tablelands

June 1–Aug. 30 Sept. 15–Dec. 1 June–Aug. Sept., Nov.

Pacific Northwest May 1–July 20 Sept. 15–Dec. 1 Mar.–July Oct.

Healthy sagebrush (Artemisia tridentata) steppe near Granite Mountain, central Wyoming. Photograph by Hua Shi, U.S. Geological Survey.
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Figure 2.  Rangeland Condition Monitoring Assessment and Projection mapping regions.

We want our products to rep-
resent a combination of empirical 
data and logic-based rules; therefore, 
we used postprocessing models to 
limit noise and accurately capture 
postfire component cover values. 
Postprocessing has been improved 
with updated fire recovery equations 
stratified by ecosystem resistance and 
resilience classes (Maestas and oth-
ers, 2016).

Validation Results

Maps are rigorously validated 
using field data not included as train-
ing (that is, independent validation) 
and by assessing model fit to training 
data. Our independent field data con-
sist of (1) 1,880 points, each specifi-
cally designed to represent a single 
Landsat pixel, collected from 2013 

to 2020 and (2) long-term monitor-
ing data in southwestern Wyoming 
at 126 plots observed 12 times 
between 2008 and 2021 (number of 
observations [n]=1,137). Validation 
was assessed using the coefficient of 
determination (R2), in this case, the 
proportion of the spatial/temporal 
variation in independent field data 
that is explained by the component 
cover maps; that is, the precision. The 
root mean square error (RMSE) indi-
cates the expected difference between 
the field and mapped data; that is, the 
accuracy.

Correlations between RCMAP 
and independent validation sites were 
again robust across all components; 
the R 2 value was 0.75 for bare ground 
(RMSE=13.5 percent) and 0.40 for 
shrub cover (RMSE=10.3 percent) 
(table 3) and the average R 2 value 
was 0.53 and the average RMSE was 
10.4 across components. We com-
pared RCMAP data to BLM Analysis 
Inventory and Monitoring (AIM) and 
Landscape Monitoring Framework 
data (n=45,132) collected between 
2004 and 2021 (table 3). Correlations 
between RCMAP and AIM/
Landscape Monitoring Framework 
data were again robust across all 
components, and the R 2 value was 
0.60 for bare ground, 0.66 for tree, 
and 0.35 for shrub cover; the average 
R 2 value was 0.38 and the average 
RMSE was 14.3 across components.

At the long-term monitoring 
sites in southwestern Wyoming, 
the spatial-temporal correlation 
(n=1,137) indicated robust correla-
tions for all components, and the 
R2 value was 0.62 for bare ground 
(RMSE=11.7 percent) and 0.47 for 
shrub cover (RMSE=8.0 percent); 
the average R 2 value was 0.42 and 
the average RMSE was 8.93 across 
components.

Finally, we completed a cross 
validation of predictions against 
training data at high-resolution 
training sites using a random sample 
of 100,000 points (table 3). Cross-
validation correlations included an 
R 2 value of 0.89 for bare ground 



Table 3.  Summary of independent validation at independent and Bureau of Land Management Analysis Inventory and Monitoring/
Landscape Monitoring Framework sites and cross-validation high-resolution training sites.

[R 2, coefficient of determination; n/a, not applicable; AIM/LMF, Analysis Inventory and Monitoring/Landscape Monitoring Framework; RMSE, root 
mean square error]

Data Metric Annual 
herbaceous

Bare 
ground Herbaceous Litter Sagebrush Shrub Tree

Independent R 2 0.56 0.75 0.70 0.37 0.41 0.40 n/a
AIM/LMF R 2 0.30 0.60 0.56 0.03 0.42 0.35 0.66
Cross validation R 2 0.75 0.89 0.82 0.70 0.66 0.66 0.83
Independent RMSE 10.1 13.5 12.4 8.6 7.3 10.3 n/a
AIM/LMF RMSE 15.1 24.4 21.7 12.0 8.5 11.0 7.4
Cross validation RMSE 5.4 9.7 7.9 5.5 4.1 8.3 9.7

(RMSE=9.7 percent) and 0.66 for 
shrub cover (RMSE=8.3 percent) and 
an average R 2 value of 0.76 and aver-
age RMSE of 7.3 across components.

It is important to consider that 
all accuracy assessments described 
previously are designed to evaluate 
single-pixel level correspondence. 
Because of fine-scale landscape 
heterogeneity, this is the most rigor-
ous approach, and most applications 
looking at broader spatial scales or 
averages across management units 
would tend to lower the error relative 
to this analysis.

Caveats
CCDC synthetic data rely on har-

monic models to fit the temporal pro-
file of all available clear Landsat data. 
The algorithm can predict Landsat 
surface reflectance for any dates. The 
quality of the model is dependent on 
the number of clear observations, and 

increased likelihood of simple models 
is near the end of the time series 
(Zhu and others, 2015). The method 
creates the potential for a temporal 
lag in phenomena to manifest in the 
synthetic imagery. We do not consider 
synthetic images to be exact proxies 
of additional “real” Landsat obser-
vations; rather, the images include 
the data to represent the inter- and 
intra-annual phenological patterns, 
which are strongly related to compo-
nent cover.

The nature of our modeling 
approach tends to result in bias 
toward underestimating change 
between periods rather than overes-
timating change. Most training data 
were derived from high-resolution 
predictions (table 1) of component 
cover, which greatly increase the 
number and spatial extent of train-
ing data; however, because these are 
modeled products, they do contain 
error (table 4). Assessments of 
component predictions at the high-
resolution scale demonstrate average 

correlation by component rang-
ing from 0.90 to 0.97 and absolute 
error of 1.81 to 4.65 percent. High-
resolution training for tree cover was 
derived using a convolutional neural 
network classification of imagery, 
not cubist as the other components. 
Error also exists in the other sources 
of training data (for example, 
BLM AIM).

RCMAP products are designed 
to reflect the ground conditions under 
the peak of the growing season (that 
is, greenest conditions); however, 
because of image availability and 
timing of training observations, 
these conditions may not always 
be reflected. Users are encouraged 
to evaluate differences between the 
largest possible units acceptable to 
their analysis (for example, compare 
the population of pixels between two 
pastures instead of comparing two 
pixels) to minimize the effect of error.

Table 4.  Test accuracy, correlation coefficient (r ), and absolute error of 
high-resolution (2-meter) scale predictions of component cover.

Component Absolute error Average correlation (r )
Bare ground 4.65 0.97
Herbaceous 4.26 0.94
Litter 3.13 0.91
Shrub 4.55 0.94
Sagebrush 2.66 0.90
Annual herbaceous 1.81 0.94
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Sagebrush flat in Grand Teton National Park, Wyoming. 
Photograph by Hua Shi, U.S. Geological Survey.

By Matthew B. Rigge

For more information, please contact: 
Customer Services
USGS Earth Resources Observation and 
Science Center
Sioux Falls, SD 57198
605–594–6151

For additional information, visit https://
www.mrlc.gov/ or https://www.mrlc.gov/
rangeland-viewer/
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